研究的问题:改变角度(范围从0°到90°)的效果是什么,在该角度倾斜的“气泡”管的“速度”倾斜泡沫的速度上升管?

背景:在这个实验中,我们使用了“气泡速度”管。这些长玻璃管充满了未知粘度的流体,其中有一个气泡。粘度,俗称流体的厚度,是指流体流动时的阻力。当管子被翻转时,管内的气泡会发生位移,因为管内密度更大的流体会向下滑动,导致密度较小的气泡被推到顶部。此外,由于气泡充满了气体,它上升,而液体,是一种液体,被引力拉下来。我们用这个管子来测试管子倾斜的角度是否会影响气泡沿管子向上运动的速度。如果有人要问这个实验室的实际应用是什么,应该是空气栓塞。

空气栓塞是当静脉或动脉中存在空气/气体的气泡时发生的条件,阻止血液流过(如前页的图所示)。当您暴露于高压时,可能会发生,导致空气允许通过静脉或动脉行进。这与我们的实验有关,因为它还处理具有粘度(血液)的流体,其中管(静脉/动脉)中具有漂浮通过它的气泡。一旦管变得太小并且摩擦增加,管中的气泡(静脉/动脉)被卡住并阻挡它。而且,由于血液的粘度非常高,因此气泡流过的粘度已经困难。最重要的是,由于泡沫浮动(由于它是一种气体),它可以在你身体的某些部分抵抗血液的流动,产生更多的摩擦。医生使用这种知识,有时患者坐下来缓慢/停止栓塞肺,心脏和大脑(2)。就像改变管(静脉/动脉)的角度慢下来/停止泡沫。因此,最终,该实验可能与空气栓塞的真实例子有关。这项实验可以教我们很多关于气泡移动和慢速速度的角度,以进一步流动最多达到大脑等重要的身体部位。

材料

  • 1个计时器(精确到百分之一)
  • 木质米尺1根(带有毫米)
  • 1量角器(测量角度时要保证0/180°刻度能接触到台面,否则无法正确测量角度)
  • 1胶带
  • 1环架
  • 1蓝色“气泡速度”管(注满一种我们不知道粘度的液体)
  • 1金属螺钉夹

过程:
1.设置图表中看到的实验室

2.用量角器测量你的第一个角度(20°)。调整环架上的夹钳,以便当管子倾斜在它上时,管子倾斜的角度与你测量的角度(在这种情况下是20°)。

3.让一个伙伴翻转管子,使气泡在管子的底部,并把管子放到位(管子的一端对着桌子上的胶带,顶部对着钳子)。让另一个伙伴按“开始”计时器一旦泡沫的前面通过0.4米胶带标记管(如图表上的标签),并停止计时器一旦泡沫达到结束和停止移动。

4.记录数据表中测量的时间。

5.重复3-4步骤3次,获得该角度的三组数据。

6.重复步骤2-5,但为您的第二角度测量(30°)。

7.重复步骤2-5测量第三个角度(45°)。

8.重复步骤2-5,为您的第四角测量(60°)。

读:
空气实验室的分子量解释

9.重复步骤2-5测量第五个角度(90°)。

9.1。一旦你为所有的角度测量收集了三组数据(和不确定度),找到平均时间和平均不确定度(你的三次试验从那个角度测量的范围除以2)。

9.2.通过将距离(0.4米)除以角度测量的平均时间来提取每个角度测量的气泡的速度。

结论:
Based on the data we collected, we can answer our research question “What is the effect of changing the angle at which the ‘Speed of a Bubble’ tube is tilted on the velocity of the bubble going up the tube” by saying, “that the velocity increases till around 60° and then decreases again”. This causes the graph to look like a parabola where the “a” value of the standard form quadratic equation (ax^2 + bx + c = 0) is negative. We can use our data to confirm this answer. To prove this right, the angles, 20° and 90° should have the lowest velocity, since they have a 40° and 30° difference. If we look at the data, we see that the average time for the angle of 20° (5.56 +/- 0.07) and that for the angle of 90° (5.72 +/- 0.03) are the highest values. The angle of 60°, however, has the fastest average time of 4.64 +/- 0.05. If we are then to calculate the velocity of those points, which can be calculated by dividing the distance (0.04 m) by the average time you got for that angle, then we would get a velocity of 0.07 m/sec for the angle of 20°, 0.07 m/sec for the angle of 90°, and 0.09 m/sec for the angle of 60°. The other angles we measured that are in-between 20°-60° increase in velocity (they are more than the velocity of the angle of 20°, but lower than that of the angle of 60°) and the ones in-between 60°-90° decrease in velocity (they are lower than the velocity of the angle of 60°, but higher than that of the angle of 90°). This means that the data is in the shape of a parabola, since it increases then decreases. The “sweet-spot” seems to be around 60°, because the velocity is the highest for that angle. These results make sense, because there should be a “sweet-spot” and increasing/ decreasing velocities. It the slope is too steep, then the bubble is trying to float up quickly and the fluid is being pulled down by gravity quickly, causing the fluid to slide down on both sides of the tube. This produces a great amount of friction, since the bubble is being pressed in between the liquid. This then causes the velocity to decrease. However, if the slope is too gradual, then the fluid is not being pulled straight down by gravity and the bubble is floating up slowly. Instead the fluid is being pulled against the glass tube, increasing the friction with the glass, on top of the friction with the bubble. So, if there is a right balance in the slope of the tube, then the gravity will pull the fluid down in a way that produces the least friction with the bubble, and the bubble will have the right angle to float up against the glass to the top of the tube with the least friction. With our data we can see that the balanced spot, the “sweetspot”, is around 60°. The intercept of the line of best fit at (0,0.05), however does not fit the
实验。在0°的角度测量下,速度应为零,导致截距处于原点(0,0)。由于这不是这种情况,并且它拦截(0,0.05),我们可以得出结论,这是由于在该实验期间发生的错误。如果要继续进行此实验进行进一步调查,那么我希望该图不会继续减少直到X轴,而是弯曲和增加。这将导致它看起来像一个正弦图,它在y轴上开始不会交叉x轴。我会期待这一点,因为一旦在0°和90°之间完成角度,那么90°和180°之间的角度就是相同的斜率,但在不同的方向上。这将产生与另一个季度(0°-90°)相同的角度(与相同斜率的角度)产生类似的结果。在图中,这看起来像一个重复波(正弦图),每个相应的曲线非常相似。

读:
透析管实验室的选择性渗透性:解释

评价:
在这个实验中,我的实验伙伴和我意识到发生了多个错误,可能会影响我们得到的结果。

首先,在泡沫时出错,因为难以捕获通过“起始线”的气泡并同时按下计时器上的开始。这是因为泡沫将通过磁带和人的时机,然后不得不快速反应,一旦看到气泡的开始就会从管道下方开始。那里有一个略有的定时错误,导致时间更多或更少地运行它实际上应该的时间。而且,止动的时序也不容易,因为气泡必须停止在顶部移动。但是,有时它停止移动,所以计时器会按下停止,但实际上它仍然必须反弹并停止。这些定时误差会影响我们测量的速度。

其次,我们的保护器被印在一块非常易弯曲的薄塑料上。这使得精确测量角度变得困难,因为如果它轻微弯曲,就会影响我们倾斜管子的角度。反过来,这个角度上的误差会影响气泡到达管子的时间,导致那个角度的速度不是它应该是的速度。它可能是一个角度高1°-2°或低1°时的速度,因为量角器不容易使用。

Finally, since time was essential in this lab and we had to be very quick to flip the tube and place it where it needed to be, there were certain times where the tube’s end was not exactly where it needed to be (on the piece of tape on the table). When we failed to do so, the angle at which the tube was tilted would be affected. Again, this means we would record the velocity for an angle 1°-2° higher or lower, which affected the average velocity we calculated for the angle we were originally trying to measure.

参考文献

  1. 1基威湖,柔丝。“空气栓塞”。Healthline。健康线媒体,2015年9月25日。2016年9月13日。< http://
    www.healthline.com/health/air-embolism Treatment5 >。
  2. kivi,罗斯。“空气栓塞”。
  3. 布劳恩Melsungen。空气栓塞。数字图像。空气栓塞的原因。安全
    输液治疗,2016。网。2016年9月13日。法语/ 1(1).png>。
  4. Elert,Glenn。“粘度”。物理信息。物理超缩略簿,2016。网。9月13日
    2016.< http://physics.info/viscosity/ >。
引用这篇文章为:William Anderson (Schoolworkhelper编辑团队),“泡泡实验室的速度:解释,”SchoolWorkHelper,2019年,//www.chadjarvis.com/velocity-of-a-bubble-lab-explation/

帮助我们用旧的散文修复他的笑容,需要几秒钟!

-我们正在寻找你之前的论文,实验和作业!

-我们会审查并发布在我们的网站上。
-AD收入用于支持发展中国家的儿童。
-通过“微笑手术”和“微笑列车”来帮助支付腭裂修复手术的费用。

来宾
0.评论
内联反馈
查看所有评论